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The task of a complete statistical description of the state of a micro-inhomogeneous bhody
which is subjected to the action of arbitrary surface forces is reduced to two problems:
(1) the problem of the generalized couple siress theory of elasticity and (2) the problem of
the micro-inhomegeneous theory of elasticity in conditions of a macroscopically homo-
geneous state of deformation. It is also shown that the solution of the boundary problem
of the generalized couple stress theory of elasticity determines mean displacements of the
examined micro-inhomogeneous body. Some variants of formulating of boundary problems of
the couple siress theory of elasticity were also considered and their relation with the
theory of deformation of micre-inhomogeneous bodies was determined.

1. Let us consider the deformation of a micro-inhomogeneous elastic body in which
stresses 7‘1 and deformations e; (dlsplacements w) are related by Hooke's law
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with a tensor of moduli of elasticity ¢, ijlm Tepresenting a stansncally homogeneous and
isotropic random temsor field [1]. Determmanon of statistical characteristics for the field
of displacements is reduced to the solution of stochastic differential equations
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with corresponding deterministic boundary conditions,

The solution of problem (1.2) in the case of a macroscopically homogeneous state of

deformation €;;; = const [2] for fluctuations w; “of the vector of displacements gives
’ .
wi = @ (xs) €jx (1.3)
Here ) s 1 7 du 8”7«:
v, — PR—F ;oo L e —— & T e | B —
wi =W Uy U= W, B = gy = kaxk—F ox; (1.9
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Here and in the following the statistical mean of the corresponding function is in-
dicated by angular brackets and deviations from the average by primes. The tensor Pijn
is determined by Green’s tensor of the problem of the homogeneous theory of elasticity and
by the tensor Ci}fm of deviations of moduli of elasticity.

Considering now a macroscopically inhomogeneous state of deformation of a body and
assuming that characteristic dimensions of inhomogeneities are small in comparison with
the distance at which changes in macroscopic deformations ¢ ;. are noticeable, we shall
accept that the relation (1.3) defines fluctuations of displacements w; " of a macroscopic
volume element also in the case of an inhomogeneous field g € ik (x }. In other words, the
relationship (1.3), exact for g 4 = const, will also be applied for weakly varying {in com-
parison with fluctuations w; ‘Y fields 8}% {x).

Computing according to this assumption the mean value W of the specific potential
energy of deformation

I3 g . 2o I N A ! (1.5)
W= Yy (Tyjeiy = Ha Xt (o b e (Tiyeyy >
we find
W =15 aypeizerr + Yo birtmnRise®imn -+ QijptmnBiseim .

1.6

where%iik is the gradient of the strain tensor

Oajk

%‘ijk == “@'{ (17)

In the considered case of a statistically isotropic field ¢, ijlm the tensor d;]klm
vanishes and the tensors g, ikl and b, }clmn are isotropic tensors. Taking into account the

existing symmetry of these tensors, the relation (1.6) can be presented as
W= Yoheseng -+ Weg€rr - MaMaipMe g 1+ NeXiasiMark + (1.8)
- M3XiarMisn + NaRigeRigr T NeXikXnji

The first two terms of the relation (1.8) include the work of mean stresses on mean
strains (first term of (1.5)) and a part of the work of fluctuations of stresses on fluctua-
tions of strains (a part of the second term of (1.5)) which corresponds to the energy of
micro~deformations [3], occurring at a macroscopically homogeneous state of deformation.
The remaining terms of the relation (1.8) determine the contribution brought to the mean
energy of deformation by the directional effect of gradients of macrodeformations on the
distribution of stress and strain fluctuations.

The basic hypothesis on validity of the relationship (1.3) in an inhomogeneous field
sfk (xs) reduces the problem of deformation of mean displacements <w; > for the considered
micro~-inhomogeneous body {for definiteness we shall assume that w; is the solution of the
boundary value problem of the equations (1.2) for specified deterministic forces g; acting
on the surface of the body) to the problem of determination of displacements u; of a homo-
geneous elastic body of the same shape and subjected to forces g; (x,) given on the sur-
face s of the body and whose density of the potential energy of deformatlon is determined
by the relation (1.8). The displacements u; determined in this way are only approximately

equal to < w;> and the approximation is the better, the more accurately the relationship

{1.3) ts fulfilled.
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2. The boundary value problem for determination of the vector u; is obtained from the

Lagrange’s variational principle
S IV (&ijy i) 4 = S 7:0u; ds (2.1)
(v) (5)

Introducing tensors Oij and Hijk as generalized forces for corresponding generalized

displacements g ij and X ijk

_ W oW (2.2)

we have

W = 60845 + Wipedxizn

Expressing 8;’/’ and % ik by means of displacements u;, we can present SW in the
form

v 4 a”m:) a al‘-ijk a O6u,
SV = oz, [(ij‘_— Bz, du; | — 7z, (ij Gz, ) ou; + 5z (Hi;’k Tx;)

Hence

o, s
S Wdv = S (ij’- :‘:k) nydu;ds —

(2.3)
- S oy (G,‘k — a;‘ 611,]- dv + Wisxty —_ka ds
& F : ®
Variation d0u./Jx, can be presented as
i'O%k P
86u; d8u; 96, (2.4)
—0_2:;’ = n’kévj + EsxiEmriMsMm 0er (Gyj: axs ns>

Here 50}. is the part of the variation independent of Su, and &ijk is the antisymmetrical
unit pseudo-tensor; its components are equal to +1 (— 1) if {, j and & form an even (odd)
permutation of numbers 1, 2 and 3, and are equal to zero if any two indices are the same.
Using (2.4) we find

OGuJ. P
Wik 74 Ty = Wy ixOV; + Empflm 5 (EskiMijenindi ;) —
r
F:S (2.5)
— g (WageTarty — Wigaltarey) e
A

Substituting (2.3) and (2.5) into (2.1) we obtain

d 0
S {[Gﬂt — 3z (Wi 4 Wogghng — Wipn;) ] ng — f/j} du;ds —

(s)
a et
G2, \%* T oz,
()

) du;dv + S Wi ingdv; ds 4
(s) (2.6)
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+ 5 Eirt? (;_1‘ (Ssklllwknins(‘)”j) ds — 0
) !
For a smooth surface s, according to Stokes theorem, the last integral in (2.6) is
equal to zero and, therefore, utilizing the independence of variations, we find from (2.6)
equations of equilibrium

a [ o
ey (01 g = 0 (2.7
k i
and boundary conditions for s
d .
Sik — iy (Wi = gt — Bageing) | g == g
1

Wi eniny; = 0 @8

If the surface s is piece-wise smooth, then from the last integral in (2.6) we also
obtain conditions at the kink

(pigpnvell =0 (2.9)

where Vi = g ifs, and t; are components of the unit vector which is tangential to the

kink. The symbol [[ .. ]] indicates the quantity shown in the brackets presents the differ-

ence between the values corresponding to different sides of the kink.

It should be taken that {(in conformity with the Lagrange principle) the quantities
Ui]. and Wijp, are expressed by displacements according to (2.2).

3. The boundary value problem (2.7) to (2.9) for determination of u; represents a
generalization of the couple stress theory of elasticity for a special form of boundary
conditions (at the boundary, only surface forces ¢, are different from zero). The couple
stress theory of elasticity is usually understood [4 to 6] as the theory according to which
the deformation energy W is determined by the strain tensor and the gradient of the rota-
tion (a)l-) vector determining the rotation of an elementary volume of the body. It can be
shown that this theory is equivalent to the theory in which W represents a function of the
strain tensor and of the antisymmetrical part % ;;;; of the tensor ik i.e. the theory in

which W is expressed in the form

W =W (87-:, %[jj]k) (3.1
The boundary value problem (2.7) to (2.9) corrcsponds to the energy
VV == Hv (Ei_:, %1_,‘]{) (3'2)

where all components of the gradient of the tensor of deformations are taken into account.

Some problems concerning the theory with energy (3.2) were examined in papers [7 and 8].

In this manner the problem of determination of mean displacements u, (xs) of a micro-
inhomogeneous medium (1.1) in a state of macroscopically inhomogeneous deformation is
brought to the problem of the generalized couple stress (homogeneous) theory of elasticity
(2.7) to (2.9). Let us assume that this problem is solved and the functions u. (xs) and con~
sequently also Sjk (xs) are found. Then, the fluctuations wi'of displacements of the

considered micro~inhomogeneous medium will be found from the relations (1.3) and they
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will be fully determined, if the functions ‘pijk (xs) from (1.3) are known, i.e. if the problem
of the fluctuations distribution at a macroscopically homogeneous deformation state of the
body is solved. From the mean values ui (x ‘) and fluctuations wi'(xs) of displacements,
moments of any order of the vector of displacements and of tensors of deformations and
strains can be constructed [2] i.e. a complete statistical description of the deformed
medium [1] can be given. Consequently, for a complete statistical description of the state
of a micro~inhomogeneous body (1.1) which is subjected to the action of arbitrary surface
forces q. (x s)’ a successive solution of two problems is required : (1) of the problem of a
generalized couple stress theory of elasticity of a homogeneous hody whose solution de-
termines mean displacements, and (2) of the problem of the inhomogeneous theory of
elasticity with special boundary conditions, which guarantee a state of macroscopically
homogeneous deformation ; the solution of this problem (together with the solution of the
previous one) determines fluctuations of displacements.

4. We shall now show that if we do not take into account the contribution to the
energy (1.8) brought by the symmetrical part of the gradient of the deformation tensor, then
the problem of determination of the displacement s, coincides with the boundary value
problem of the couple stress theory of elasticity presented in the usual form.

If in (1.8) only the antisymmetrical part X{ijlx of the tensor X;j;» is taken into
account, then W is expressed as follows

1
W = 5 Aeueax |- peasa + 20 (s - 1)

- (4.1)
(l’ —ﬁ(ﬂ:—i—z'll—'ls). '|=—8|?)
The tensors %;; and XKfijjx are interrelated by
Kij = EjimAimi = EjimA{im] i» X[im)i = I/n‘!jlm"ii (6 = 0) 4.2
For the tensors
ow ow

i = ey, Pii = gy

which represeut generallized forces displacemeats ¢ i and 3%, i generallized, from (4.1)
we have

oij = Aemdy; + 2pey,  pg; = Al (o + eyy)
The energy variation

W = ;8845 + pydoes;

can be expressed as

= %l [(Gm + 5 eij a:z ) but]
1

ap
—E(Ou-l—iem Bz, )Mk—l';,, (1;005)

where @ i is the rotation vector

(4.3)



1040 V.A. Lomakin

4 Ou_

m

W; = 7 &iim 53— az (4.4)
Then from (4.3) we have

Sdev = S (ct, + 35 &y a; ) nduy ds —
®) (s)

> a al‘
- S 0: (GH + 5 P &xti o a.'l.' )buk dv + S p.{,-nibmjds
(@) (8)

(4.5)

Separating those variations &$; = 8 (@; — ©,7,7;), which are independent of Buk,
we present the integrand of the last integral in (4.5) as

6
Binid@; = (Rijnt; — Peny By) Sp; — Sku

T e ox; (T"'(n) 6"*)’ Bmy = BTy

nlauk +
(4.6)

Substituting (4.5) and (4.6) imto (2.1), considering the surface s to be piece-wise
smooth and using Stokes fomsula, we find the equations of equilibrium

] oy,
o, (01-1 + 5t d: ) =0 47
the boundary conditions

1 op,
[Gu + 5 8mij (a;:” a,‘:))] m=qx, (Mns— R, n) =0 (4.8)

and the conditions at the kinks
[lpmll =0 (4.9)

The relations (4.7) to (4.9) coincide (with boundary conditions adequately chosen)
with the equations for the boundary value problem of the couple stress theory of elasticity
presented in the usual form [5].

3. The tensor 5 iik can be resolved into component tensors which have a definite
geometric meaning and stand o their own. Different tensors, isolated from 3 .., may play
different roles in deformation processes of micro-inhomogeneous bhodies, therefore such a
tensor separation appears to be appropriate. In particular, any tensor i, ijk symmetrical in
the indices j and & can be preseated in the form

Rije = Yo + Vs S -+ Matattin, Ty = s (e + %+ %)
Here % 7 is determined by the relations (4.2). Then, introducing tensors

ow _ow ow
Gij = %, = g T Bk

we shall present the energy variation

W = oydey + IiBrs; + mundak

as
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W= %— {[Gn' — «Ti; ('i- &jultar - mm)] Su;t —
3

— [Gu ai ( : &julte + m;it)] 8u; +8’t (l"ﬂ‘s“" + M aiu )

Here @ is the rotation vector (4.4). Hence
(5.1

X 1y Imyy

(S,)ade (§ 31‘(% + 5 ou g "ﬁ )bu 2+
» am

+ S (Gii + ; 8351 _a"x“' — 3 “t) n,bu;ds + S p,k,nt&o,ds -+ Smﬁknk-—-—-ds
(s) (s (8)

The independent variations on the surface s are: varistions of displacements O i
variations of the tangential component of the rotation vector §¢; = S (e; — o,n,n)
and variations of the relative elongation 8 (s,.n,n.) nommal to the boundary. Separating
independent variations, we shall write the integrand of the pemultimate integral in the
form (4.6) and that of the last integral in the form

3bu;
Myjitg 35— = 2ExuliMijphNpdb + Mupninmd (8,nim,) —
- ?7% [""'”” (Mipk -+ Megetys) — Malty (Mip + My ndus 4+ (5.2
8
+ Brrtm 5 [Bitpngltx (Max + Maiitng) Suy]

Substituting (5.1), (5.2) and (4.6) into (2.1) and takimg into account independence of
variations Ju; in the volume v, of variations Su;, Or, 8 (8:,mn,) on the surface s and of
variations § ({1}, 8 (u; — wifit;) at the kinks, we find the equations of equilibrium

1 8m.
(')a: (Gu + 5 3 sutag:: “""‘a‘t ) =0 (5.3)

the boundary conditions

oy g
{cu + 5 it ( az"' — 7,;‘1—’\) — 3z [mu*: + njng (Migx -+ Mypin ) —
—~ g (Mijp + msipn-'k)l} n;=gq; (5.4)

(Bl — Bmy T+ 28xunxmijpning) = 0, mgamin, =0
and the conditions at the kinks
1
HE Bmy + GV (meje -+ msy‘x“s“r)]} =

(5.5
[[ving {(mijx + Mgjxnang) — tts (Myjy -+ mepngn,)}]] = 0

The same notation is used in (5.5) as in (2.9).

The relations {5.3) and (5.5) contain the equations of the couple stress theory of
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elasticity (4.7) to (4.9) as a particular case and for ™k = 0 become identical with them.

In this manner, displacements u; which represent the solution of the couple stress
theory of elasticity (4.7) #94.9) determine mean displacements of a micro-inhomogeneous
body, if only a part of the energy (1.5) cosresponding to the strain tensor and to the anti-
symmetrical part %(;jjx of the gradient of deformation tensor (3.1) is taken into account.
Displacements u;, presenting the solution of the boundary value problem (2.7) to (2.9)
or {5.3) to (5.5) determine mean displacements of = micro-inhomogeneous body (1.1),
taking into account the total emergy (1.5). Therefore, from the point of view considered,
the couple streas theory of elasticity (4.7) to (4.9) is only of a limited interest and the
generalized coaple stress theory of elasticity (2.7) to (2.9) or (5.3) to (5.5), appears to be
more advantageous.
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