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The task of a complete statistical description of the state of a micro-inhomogeneous body 
which is subjected to the action of arbitrary surface forces is reduced to two problems: 
(1) the problem of the generalized couple stress theory of elasticity and (2) the problem of 
the micro-i~homogeneous theory of elasticity in conditions of a macroscopically homo- 
geneous state of deformation. It is also shown that the solution of the boundary problem 
of the generalized couple stress theory of elasticity determines mean displacements of the 
examined micro-inhomogeneous body. Some variants of formulating of boundary problems of 
the couple stress theory of elasticity were also considered and their relation with the 
theory of deformation of mica-inhomogeneous bodies was determined. 

1. Let us consider the deformation of a micro&homogeneous elastic body in which 

stresses 7ij and deformations eii (displ acements tui) are related by Hooke’s law 

with a tensor of moduli of elasticity c.. 
rllm representing a statistically homogeneous and 

isotropic random tensor field Cl]. Determination of statistical characteristics for the field 

of displacements is reduced to the solution of stochastic differential equations 

with corresponding deterministic boundary conditions, 

The solution of problem (1.2) in the case of a macroscopically homogeneous state of 

deformation ELI; = const [2] for fluctuations wi’ of the vector of displacements gives 

wi’ F ‘P2jk (rs) Ejk (1.3) 

Here 

Wi’ = U’i - lli, iii :ZY <?ri), (1.4) 
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llere and in the following the statistical mean of the corresponding function is in- 

dicated by angular brackets and deviations from the average by primes. The tensor tpiih. 

is determined by Green’s tensor of the problem of the homogeneous theory of elasticity and 

by the tensor cit;[m of deviations of moduli of elasticity. 

Considering now a macroscopically inhomogeneous state of deformation of a body and 

assuming that characteristic dimensions of inhomogeneities are small in comparison with 

the distance at which changes in macroscopic deformations E 
lk 

are noticeable, we shall 

accept that the relation (1.3) defines fluctuations of displacements w.’ of a macroscopic I 
volume element also in the case of an inhomogeneous field E . 

Ik 
(x,). In other words, the 

relationship (1.3), exact for 6 . = const, will also 

parison with fluctuations wi ‘{kfields cik (x,). 

be applied for weakly varying (in com- 

Computing according to this assumption the mean value IV of the specific potential 

energy of deformation 

we find 

i I’- = ‘I:! ~~~kl&ij~k~ + ‘12 bijkz,,~~*~~jk~~,*~ + didkl mn%jXkl m (1.6) 

where% . . 
r/k 

is the gradient of the strain tensor 

“jk 
%ijk = z- (1.7) 

i 

In the considered case of a statistically isotropic field c.. the tensor d.. 

vanishes and the tensors (I.. 
i]lIn ’ qklm 

rjkl and bi ‘klmn 
f, 

are isotropic tensors. Taking into account the 

existing symmetry of these tensors, t e relation (1.6) can be presented as 

\I- = l/&it@~fi -t_ p&klEkl + 1llXiikXkjj + %%jj%kk -‘b 0.8) 
-'k r]J%ikXjjk $_ ?ld%jk%jk $ %%jkxkji 

The first two terms of the relation (1.8) include the work of mean stresses on mean 

strains (first term of (1.5)) and a part of the work of fluctuations of stresses on fluctua- 

tions of strains (a part of the second term of (1.5)) w re corresponds to the energy of h’ h 

micro-deformations 131, occurring at a macroscopicaily homogeneous state of deformation. 

The remaining terms of the relation (1.8) determine the contribution brought to the mean 

energy of deformation by the directional effect of gradients of macrodeformations on the 

distribution of stress and strain fluctuations. 

The basic hypothesis on validity of the relationship 11.3) in an inhomogeneous field 

E 
Ik 

(x,) reduces rhe problem of deformation of mean displacements < zoi > for the considered 

micro-inhomogeneous body (for definiteness we shall assume that zei is the solution of the 

boundary value problem of the equations (1.2) for specified deterministic forces qi acting 

on the surface of the body) to the problem of determination of displacements ui of a homo- 

geneous elastic body of the same shape and subjected to forces qi (z,) given on the sur- 

face s of the body and whose density of the potential energy of deformation is determined 

by the relation (1.8). The displacements ui determined in this way are only approximately 

equa1 to < mt> and the approximation is the better, the more accurately the relationship 

(1.3) is fulfilled. 
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2. The boundary value problem for determination of the vector ui is obtained from the 

Lagrange’s variational principle 

s l 611’ (Eij, Xijk) dv = q&Lids s 
(U) (5) 

(2.1) 

Introducing tensors oii and piik as generalized forces for corresponding generalized 

displacements 8 ij and xijk 

8W 
Oij = ae,j 3 

aW 
kk = ihi, 

(2.2) 

we have 

Expressing E ij and 3~ ..k by means of displacements ui 
‘I 

, we can present 6W in the 

form 

Hence 

Variation a8nj/&b can be presented as 

(2.3) 

(2.4) 

Here 8uj is the part of the variation independent of 8ai andeijk is the antisymmetrical 

unit pseudo-tensor; its components are equal to + 1 (- 1) if i, j and k form an even (odd) 

permutation of numbers 1, 2 and 3, and are equal to zero if any two indices are the same. 

Using (2.4) we find 

pijk ni ‘z = piik72iiZk8Vj + Emrlnm Y$ (E,klfJ.ijknin$ii j) - 
k 

- & (PijTWr - &jkni%) nk% 

Substituting (2.3) and (2.5) into (2.1) we obtain 

pijknink6vi ds f 
s 

(s) 

(2.5) 

(2.6) 
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For a smooth surface s, according to Stokes theorem, the last integral in (2.6) is 

equal to zero and, therefore, utilizing the independence of variations, we find from (2.6) 

equations of equilibrium 

(2.7) 

and boundary conditions for s 

If the surface s is piece-wise smooth, then from the last integral in (2.6) we also 

obtain conditions at the kink 

]]&jk?lil’k]] :=: () (2.9) 

where Yk = &klst[&, and tl are components of the unit vector which is tangential to the 

kink. The symbol [[ . . J I indicates the quantity shown in the brackets presents the differ- 

ence between the values corresponding to different sides of the kink. 

It should be taken that (in conformity with the Lagrange principle) the quantities 

aii and pijk are expressed by displacements according to (2.2). 

3. The boundary value problem (2.7) to (2.9) for determination of ui represents a 

generalization of the couple stress theory of elasticity for a special form of boundary 

conditions (at the boundary, only surface forces qj are different from zero). The couple 

stress theory of elasticity is usually understood [4 to 6] as the theory according to which 

the deformation energy W is determined by the strain tensor and the gradient of the rota- 

tion (wi) vector determining the rotation of an elementary volume of the body. It can be 

shown that this theory is equivalent to the theory in which W represents a function of the 

strain tensor and of the antisymmetrical part “lijl~ of the tensor x . . r/k’ i.e. the theory in 

which W is expressed in the form 

w = ‘cv (&j:. “[jj]k) 

The boundary value problem (2.7) to (2.9) concsponds to the energy 

(3.1) 

w = ii- (t.i :, Xi&.) (3.2) 

where all components of the gradient of the tensor of deformations are taken into account. 

Some problems concerning the theory with energy (3.2) were examined in papers [7 and 81. 

In this manner the problem of determination of mean displacements nj (x,) of a micro- 

inhomogeneous medium (1.1) in a state of macroscopically inhomogeneous deformation is 

brought to the problem of the generalized couple stress (homogeneous) theory of elasticity 

(2.7) to (2.9). Let us assume that this problem is solved and the functions nj (x,) and con- 

sequently also ajk (x,) are found. Then, the fluctuations w i ‘of displacements of the 

considered micro-inhomogeneous medium will be found from the relations (1.3) and they 
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will be frilly determined, if the fuactions cp + (%,I from (1.3) are known. i.e. if the problem 

of the flactnations distribution at a mauoscopically homogeaeoas deformation state of the 

body is solved. From the mean values oi (zs) and flactuations zui’(zS) of displacements, 

momcmts of any order of the rector of displacements and of tensors of deformations and 

strains can be constmcted[21 i.e. a complete statistical description of the deformed 

medium [I] can be gi ven. Consequently, for a complete statistical description of the state 

of a micro-inhomogeneoas body (1.1) which is subjected to the action of arbitrary surface 

forces qi (z,), a successive solation of two problems is required: (1) of the problem of a 

generalized couple stress theory of elasticity of a hoatogmeons body whose solution de- 

termines mean displacements, and (2) of the poblem of the inhomogeneous tkory of 

elasticity with special boaadary conditions, which guarantee a state of macroscopically 

homogeneous deformation; the sohtion of this problaa (Dogether with the solution of the 

previous one) determines flactnations of displacameuts. 

4. We shall now show that if we do not take kto accoti the contribution to the 

energy (1.8) brought by the symmetrical part of the gradieut of the defonaation tensor, then 

the problem of determina tioa of the displamat =i coiacides with the boppdary valae 

problem of the couple stress theory of elasticity presenM in the usual bmr. 

If in (1.8) only the antisymmetrical part X[ijlr of the tensor &jr* is taken into 

account, thea W is expressed as follows 

(4.1) 

%j = gjln%mi = gjlm~[Imf ir X[Zm] i = l/*&jZ*xij 

For the tensors 
(xii = O) 

(4.2) 

i+W 

% = a”ii ’ 
kjEE 

which represent geneSallied forcw displacemeats t 

we have 
ij and Xi~ perrlliaed, from (4.1) 

6*j = b&j+ 2m, kj= W(%j+ Vji) 

The mergy rarhtion 

CM be expressed as 

(4.3) 

where O- is the rotation nctor 
I 
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(4.4) 

Separating those vshths qj = 6 (Oj - @ln8?tj), which are independent of b,, 

.we present the istegrssd of the hmt istsgrsl in (4.5) as 

(4.6) 

Substituting (4.5) sad (4.6) h (Xl). considering the surface 8 to be piece-wise 

smooth and using Stokes foxmmlm, we fimd the eqsations of equilibrium 

the boandary conditions 

= 0 (4.7) 

and the conditions at the kisks 

rIp( = 0 (4.9) 

The relations (4.7) to (4.9) coimcdde (with boandary conditions adequately chosen) 

with the equations for the boundary valse problem of the couple stress theory of elasticity 

presented in the asnal form [S]. 

5. The tensor xiik css be rassl~al isto component tensors which have a definite 

geometric meaning and stand m their 011. Different tensors, isolated from x . . yk’ may play 

different roles in deforms&m pmcawses of micro-iuhomogeneous bodies, therefore such a 

tensor separation appears ts bs sppopists. In par&alar, any tensor’x ijk symmetrical in 

theindicesjandkcanbepreclatedirtheEorm 

xijk = ruk + ‘13 %jl% + ‘1s sruxih Ttjg E ‘/Cd (%jI? + Xjkf + xJci.j) 

Here xii is determined by the &ass (4.2). Then, introducing tensors 

we shall present the energy rnitior 

6W = && + h&j $_ mijk8y;jk 

as 
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Here ii+ is the rotation vector (4.41. fience 

The independent variations on the ssrface s am: Matiems of displacements &bi, 

variations of the tangential component of the rotatia Nader aS, = 6 (Q)[ - cu,n,+) 

and variations of the relative elongation 6 (81&Q mand to the boandary. Separating 

independent variations, we shall write the in-d of the paaltimate integral in the 

form (4.6) and that of the last integral in the Form 

Snbstitating (5.11, (5.2) and (4.6) into (2.1) and taking imto account independence of 

variations 8ui iu the volams Y, of variations &ti,, &+, 6 (8&&) on the ssrface s and of 

variations 6 (&u$, 6 (r,+ - z&&) at the kinka, we f&d the eqnatims of equilibrinm 

(5.3) 

the boundary conditions 

6ij + 2 “8 aPkl af%) 
ijl q -F 

@kink - pen) nl + 2EkiGkWjfljnJ = 0, %-Vk = 0 

and the conditions at the kiss 

II 
$ El(n) + Qvjnk hk + ~~~)]I = 0 

(5.51 

t [vjnk (irniik + %ik%%) - vi bik + wi&%n11 = 0 

The same notation is used in (5.5) ss in (2.9). 

The relations (5.3) sad (5.5) coatsin the eqaati of th maple stress theory of 
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elasticity (4.7) to (4.9) as a part&alar case aud for m.. 
tfk 

= 0 hecmnt identical with them. 

In this manner, dfsplacomats sf which represent the soliutfo~ of the couple strees 

theory of elasticity (4.7) m4.9) dotorkte mesa dioplaceaents of a micto-inhomogeneous 

body, if oaly a part of the energy (1.5) coxrcsponding to the strain te~~0r and to the anti- 

symmetrical part qifll; of the gradient of dcf&naatioa tensor (3.1) is t&en into account. 

Displacements ai, presenting the solation of the boandsxy r&e pmblcm (2.71 to (2.9) 

or (5.3) to (5.5) determine mean displacamsnts of a mi~mog~sons body (l-l), 

tskini into a-ant the total oacxgy (1.5). T&&ore, from the pofnt of view considered, 

tbe couple atrass Gory of elasticity (4.7) to (4.9) is only of a lfmited interest and the 

geaeralized coopie strsss theory of eksticity (2.7) to (2.9) or (5.3) to (S-S), appears to be 

more adraatageoas. 
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